Home
Class 12
MATHS
The value of int(-1)^(1)e^(|x|)dxis : (...

The value of `int_(-1)^(1)e^(|x|)dxis :`
(a) `2(e+1)^(-1),` (b) `2(e-1)` (c) `2(e-2),` (d) `3(e-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(|x|)dx=2(e-1)

The value of int_(0)^(1)e^(x^(2)-x)dx is (a) 1(c)>e^(-(1)/(4))(d)

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

Let f:[(1)/(2),1]rarr R (the set of all real numbers) be a positive,non-constant,and differentiable function such that f'(x)<2f(x) and f((1)/(2))=1. Then the value of int_((1)/(2))^(1)f(x)dx lies in the interval (a) (2e-1,2e)(b)(3-1,2e-1)(c)((e-1)/(2),e-1)( d) (0,(e-1)/(2))

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The minimum value of f(x)=int_(0)^(4)e^(|x-t|)dt where x in[0,3] is :(A)2e^(2)-1(B)e^(4)-1(C)2(e^(2)-1)(D)e^(2)-1

int_(-1)^(1)(1)/(a^(2)e^(x)+b^(2)e^(-x))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=