Home
Class 12
MATHS
Using the properties of determinants, sh...

Using the properties of determinants, show that:
`abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants.Show that: det[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

Using properties of determinants,prove that [[-yz,y^(2)+yz,z^(2)+yzx^(2)+xz,-xz,z^(2)+xyx^(2)+xy,y^(2)+xy,-xy]]=(xy+yz+zx)^(2)

xquad x ^ (2), y2yquad y ^ (2), 2xz, z ^ (2), xy] | = (xy) (yz) (zx) (xy + yz + 2x)

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)

If x^2/(yz)+y^2/(zx)+z^2/(xy)=3 then (x+y+z)^3=

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Determinant , form (x-y)(y-z)(z-x)(xy+yz+zx), of