Home
Class 12
MATHS
dy/dx = sin(x+y) + cos(x+y)...

`dy/dx = sin(x+y) + cos(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x sin y prove that (dy) / (dx) = (sin y) / ((1-x cos y))

If y = x sin y, prove that x * (dy) / (dx) = (y) / (1-x cos y)

(dy) / (dx) = (sin x-sin y) (cos x) / (cos y)

Find dy/dx if : x^sin y +y^cos x =1

cos y (dy) / (dx) + sin y cos x = sin x cos x

If y,=x sin y, prove that (dy)/(dx),=(sin y)/((1-x cos y))

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

Find (dy)/(dx) if y+ sin y= cos x

Find the particular solution of the differential equation. (dy)/(dx) = ((x sin((x)/(y))-y cos ((x)/(y)))y)/((y cos ((x)/(y))+x sin ((x)/(y)))x) , given that y = 1 when x = (pi)/(4)

[x (cos y) / (x) + y (sin y) / (x)] y = [y (sin y) / (x) -x (cos y) / (x)] x ((dy) / (dx))