Home
Class 12
MATHS
int(e^(x+a)-(1)/(sqrt(1-x^(2)))+tan^(2)x...

`int(e^(x+a)-(1)/(sqrt(1-x^(2)))+tan^(2)x)dx``:e^(x+a)-sin^-1x+tan^2x-x+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(2x)/(4sqrt(e^x+1))dx

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

int (1-tan^2x)/(1+tan^2x) dx

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

If int e^(x)(tan^(-1)x+(2x)/((1+x^(2)))^(2))dx=e^(x)(tan^(-1)x+g(x))+c where g(x) is a rational function, c is constant of integration then find the value of 20[g(2)] .

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to