Home
Class 12
MATHS
The value of the integral - int(1/4)^(3/...

The value of the integral - `int_(1/4)^(3/4)((pi)/(2)+sin^(-1)x)/(2cos^(-1)x+3sin^(-1)x+sin^(-1)(1-x)) dx` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1) sin^(11)x" dx" is

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

Value of the definite integral int_(-1/2)^(1/2)(sin^(- 1)(3x-4x^3)-cos^(- 1)(4x^3-3x))dx

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

int(sin^(-1)(3x-4x^3)dx)

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

int_(0)^( pi/2)(sin^(1/4)x)/(sin^(1/4)x+cos^(1/4)x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx