Home
Class 14
MATHS
Question Stimulus :- If sin^(-1)1/3 + si...

Question Stimulus :-
If `sin^(-1)`1/3 + `sin^(-1)`2/3=`sin^(-1)x`, then x=?

A

0

B

`(sqrt5-4sqrt2)/9`

C

`(sqrt5+4sqrt2)/9`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{2}{3} \right) = \sin^{-1}(x) \), we will use the formula for the sum of inverse sine functions: \[ \sin^{-1}(a) + \sin^{-1}(b) = \sin^{-1} \left( a \sqrt{1 - b^2} + b \sqrt{1 - a^2} \right) \] ### Step 1: Identify \( a \) and \( b \) In our case, we have: - \( a = \frac{1}{3} \) - \( b = \frac{2}{3} \) ### Step 2: Calculate \( \sqrt{1 - b^2} \) and \( \sqrt{1 - a^2} \) Now, we need to calculate: - \( \sqrt{1 - b^2} = \sqrt{1 - \left( \frac{2}{3} \right)^2} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \) - \( \sqrt{1 - a^2} = \sqrt{1 - \left( \frac{1}{3} \right)^2} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \) ### Step 3: Substitute into the formula Now, substitute these values into the formula: \[ \sin^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{2}{3} \right) = \sin^{-1} \left( \frac{1}{3} \cdot \frac{\sqrt{5}}{3} + \frac{2}{3} \cdot \frac{2\sqrt{2}}{3} \right) \] ### Step 4: Simplify the expression Calculating the expression inside the sine inverse: \[ = \sin^{-1} \left( \frac{\sqrt{5}}{9} + \frac{4\sqrt{2}}{9} \right) \] Combining the terms: \[ = \sin^{-1} \left( \frac{\sqrt{5} + 4\sqrt{2}}{9} \right) \] ### Step 5: Set equal to \( \sin^{-1}(x) \) Since we have \( \sin^{-1}(x) = \sin^{-1} \left( \frac{\sqrt{5} + 4\sqrt{2}}{9} \right) \), we can equate the arguments: \[ x = \frac{\sqrt{5} + 4\sqrt{2}}{9} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{\sqrt{5} + 4\sqrt{2}}{9}} \]
Promotional Banner