Home
Class 14
MATHS
Question Stimulus :- int1/(x(logx)^2)dx=...

Question Stimulus :-
`int1/(x(logx)^2)dx=?`

A

`1/(logx)+c`

B

`-1/(logx)+c`

C

log logx+c

D

`-log logx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x (\log x)^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] Now, we can express \( x \) in terms of \( t \): \[ x = e^t \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{1}{x (\log x)^2} \, dx = \int \frac{1}{e^t t^2} \cdot e^t \, dt = \int \frac{1}{t^2} \, dt \] ### Step 3: Integrate Now, we can integrate \( \frac{1}{t^2} \): \[ \int \frac{1}{t^2} \, dt = -\frac{1}{t} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \log x \): \[ -\frac{1}{t} + C = -\frac{1}{\log x} + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{1}{x (\log x)^2} \, dx = -\frac{1}{\log x} + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x(logx))dx=?

int1/(x(1-logx)^(2))dx=

int(logx)/(x^(2))dx=?

int(logx)^(2)dx=?

int((logx)^n)/(x)dx=

int(1)/(x^3)(logx^x)^2dx=

int(logx)/(x^3)dx=

int(logx)/(x+1)^2dx=

int((logx)^(2))/(x)dx.