Home
Class 12
MATHS
(d^(2)y)/(dx^(2))(sin(3x))=?...

`(d^(2)y)/(dx^(2))(sin(3x))=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

The degree of differential equation (d^(2)y)/(dx^(2))+y=x sin(dy)/(dx) is

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2) is

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

If y sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

The degree of the differential equation ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(2)=x sin((d^(2)y)/(dx)) , is