Home
Class 11
MATHS
log(2sqrt2)512=?...

`log_(2sqrt2)512=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(log_(sqrt2)15)=?

log_(3sqrt(2))324

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1

The solution of 2^(x)+2^(|x|)>=2sqrt(2) is (i) (-oo,log_(2)(sqrt(2)+1))( ii) (0,1)( iii) ((1)/(2),log_(2)(sqrt(2)-1)) (iv) (-oo,log_(2)(sqrt(2)+1))uu[(1)/(2),oo)

Find the value log_(2sqrt(2))((1)/(64)),log_(6)sqrt(216)

Solve :2log_(2)(log_(2)x)+log_((1)/(2))(log_(2)2sqrt(2)x)=1

(log_(8)17)/(log_(9)23) - (log_(2sqrt(2))17)/(log_(3)23) is equal to

Prove that log_(2)log_(2)log_(sqrt(3))81=1

The value of 2(log_(sqrt(2)+1)sqrt(3-2sqrt(2))+log_((2)/(sqrt(3+1)))(6sqrt(3)-10)) is