Home
Class 11
MATHS
log(ksqrtk)(sqrt(ksqrt(ksqrt(ksqrtk))))=...

`log_(ksqrtk)(sqrt(ksqrt(ksqrt(ksqrtk))))=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(ksqrt(k)) (sqrt(k sqrt(k sqrt(k sqrt(k))))) (a) (5/8) (b) (15/16) (c) (5/4)

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

If log_((sqrt(bsqrt(bsqrt(bsqrt(b)))))(sqrt(asqrt(asqrt(asqrt(asqrt(a))))))=x log_(b) a , then x =

log_(7)log_(7)sqrt(7(sqrt(7sqrt(7))))=

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is