Home
Class 12
MATHS
prove that int(dx)/(sqrt(1-x^(2)))=s...

prove that `int(dx)/(sqrt(1-x^(2)))=sin^(-1)x+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int(dx)/(sqrt(1+sin x))

I=int dx/(sqrt(1-x^(2))(9+(sin^(-1)x)^(2))

int(1)/(sqrt(1-sin x))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Evaluate: int1/(sqrt(1-x^2)(sin^(-1)x)^2)dx

Evaluate: int1/(sqrt(1-x^2)(sin^(-1)x)^2)dx

Evaluate: int1/(sqrt(1-x^2)(sin^(-1)x)^2)\ dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx