Home
Class 8
MATHS
sqrt4,root4(8),root3(5)...

`sqrt4`,`root4(8)`,`root3(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2x-3))+root(3)((2x-3))+...+root(n)((2x-3))) is equal to

(root(4)(64))/(root(4)(4))

The first three terms of a geometric sequence are root4(3), root8(3),1. The fourth term is

The product root3(2).root4(2). root12(32) equal to

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.

Compare : (i) root(6 )(15) and root(4)(12)" (ii) "sqrt(24) and root(3)(25)

root4(root3(2^(2))) equal to

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

The number of real solutions of the equation root4(97-x) + root4(x) =5 (1) 0 (2) 1 (3) 2 (4) 4

"If "y=(root(3)(1+3x)root(4)(1+4x)root(5)(1+5x))/(root(7)(1+7x)root(8)(1+8x)), then y'(0) is equal to -