Home
Class 8
MATHS
(root3(x)*root6(x))/(root4(x^3)*root9(x^...

`(root3(x)*root6(x))/(root4(x^3)*root9(x^6))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(root3(x)+root4(x))

Evaluate the following limits : Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))

If int (dx)/(sqrt(x)+root(3)x)=asqrt(x) + b(root(3)x)+c(root(6)x)+d In being an arbitary constant then the value of 20a + b+ c+d is

int(root(3)(x^2)-root(4)(x))/(sqrt(x))dx

int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

The expression \(root(3)root(6){a^{9}))^4 \(root(6)root(3){a^{9}))^4 is simplified to

lim_(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

Evaluate: int root(3)(x)root(3)(1+root(3)(x^(4)))dx

Evaluate of each of the following integrals (1-15): int_0^5(root(3)(x+4)dx)/(root(3)(x+4) +root(3)(9-x)

"If "y=(root(3)(1+3x)root(4)(1+4x)root(5)(1+5x))/(root(7)(1+7x)root(8)(1+8x)), then y'(0) is equal to -