Home
Class 12
MATHS
The value of lim( x -> 0 ) ( 2^(-1/x^2))...

The value of `lim_( x -> 0 ) ( 2^(-1/x^2))` is
( a )   2   ( b )   1/2   ( c )   0   ( d )   does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

Evaluate : lim_( x -> 0 ) (( 1 - sqrt(1 - x^2 ) ))/ x^2 ( a ) 1/2 ( b )   2   ( c )   1   ( d )   -1

Evaluate : lim_( x -> 0 ) (( 1 - sqrt(1 - x^2 ) ))/ x^2 ( a ) 1/2 ( b )   2   ( c )   1   ( d )   -1

The value of lim_(x rarr0)((1+x)^((1)/(x))-e+(1)/(2)ex)/(x^(2)) is

The value of lim_(x rarr0)(1-(1)/(2^(x)))((1)/(sqrt(tan x+4)-2))

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

The value of lim_(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)] is :

lim_(x rarr0)(e^(x^(2))-cos x)/(x^(2))" is equal to " (a) 3/2 (b) 1/2, (c) 2/3, (d) none of these

The value of lim_(x rarr0)(1+sin x-cos x+log(1-x))/(x^(3)) is (1)/(2)(b)-(1)/(2)(c)0(d) none of these