Home
Class 12
MATHS
Find dy/dx where e^x logy = sin^(-1)x + ...

Find `dy/dx` where
`e^x logy = sin^(-1)x + sin^(-1)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: e^(x)logy=sin^(-1)x+sin^(-1)y

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find dy/dx if y=e^x sin x

Find quad (dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^(2))/(1+x^(2))),0

Find (dy)/(dx) for y=sin^(-1)(cos x), where x in(0,2 pi)

"Find "(dy)/(dx)" for "y=sin(x^(2)+1).

Find (dy)/(dx) if y=sin^(-1)(sqrt(x))

Find (dy)/(dx) for y=sin(x^(2)+1)