Home
Class 12
MATHS
y=t^(2)/(sqrt(t)) then find dy/dt...

`y=t^(2)/(sqrt(t))` then find `dy/dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

intt^(2)sqrt(1-t)dt

x=sinsqrt(t),y=e^(sqrt(t)) find dy/dx

intt^(2)sqrt(1-t)*dt

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x=int_(0)^(y)sqrt(1+t^(2))dt, find (dy)/(dx)

If y=sqrt((t-alpha)/(beta-t)) and x=sqrt((t-alpha)(beta-t)) then find (dy)/(dx)

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =