Home
Class 12
MATHS
y=log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+...

`y`=`log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)+y^(2)))-:(sqrt(x^(2)+y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2))) div (sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

Y=log(4/(sqrt(x+2)+sqrt(2-x)))

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

The tangent at a point P on the curve y =ln ((2+ sqrt(4-x ^(2)))/(2- sqrt(4-x ^(2))))-sqrt(4-x ^(2)) meets the y-axis at T, then PT^(2) equals to :

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)),t h e n(dy)/(dx)i se q u a lto (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (a y)/(xsqrt(a^2-x^2)) (d) none of these