Home
Class 11
MATHS
f(x) = sqrt((1-x^2)/(1+x^2)) find (df(x)...

`f(x) = sqrt((1-x^2)/(1+x^2))` find `(df(x))/(dx)` = ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)((1)/(sqrt(13)))(2cos x-3sin x)+sin^(-1)((1)/(sqrt(13)))(2cos x+3sin x)wdot rt sqrt(1+x^(2)) then find (df(x))/(dx) at x=(3)/(4)

y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and 0

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0