Home
Class 12
MATHS
inta^b[d/dx(f(x))]dx...

`int_a^b[d/dx(f(x))]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int[(d)/(dx)f(x)]dx=

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(x) and g(f) are two differentiable functions and g(x)!=0, then show trht (f(x))/(g(x)) is also differentiable (d)/(dx){(f(x))/(g(x))}=(g(x)(d)/(pi){f(x)}-g(x)(d)/(x){g(x)})/([g(x)]^(2))

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

If f(x) is monotonic differentiable function on [a,b], then int_(a)^(b)f(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=(a)bf(a)-af(b)(b) bf (b)-af(a)(c)f(a)+f(b)(d) cannot be found

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

If f(x) is differentiable and int_(0)^(t^(2))xf(x)dx=(2)/(5)t^(5), then f((4)/(25)) equals (a)(2)/(5)(b)-(5)/(2)(c)1(d)(5)/(2)