Home
Class 12
MATHS
The range of the function f(x) = frac{1-...

The range of the function `f(x)` = `frac{1-{x}}{1+{x}}` is (where {.} denotes the fractional part of `x`)

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the Function f(x) = {sinx-2/{3}} is ......(Where {.} denotes fractional Part)?

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is

find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals where {.} represents the fractional part functional

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The range of the function y=sqrt(2{x}-{x}^2-3/4) (where, denotes the fractional part) is