Home
Class 12
PHYSICS
A particle is travelling along a straigh...

A particle is travelling along a straight line OX. The distance r of the particle from O at a timet is given by x = 37 + 27t- `t^(3)`, where t is time in seconds. The distance of the particle from O when it comes to rest is

A

81 m

B

91 m

C

101 m

D

111 m

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

A particle moves along a straight line on y-axis. The distance of the particle from O varies with time and is given by : y = 20t - t^2 . The distance travelled by the particle before it momentarily comes to rest is

The position (in meters) of a particle moving on the x-axis is given by: x=2+9t +3t^(2) -t^(3) , where t is time in seconds . The distance travelled by the particle between t= 1s and t= 4s is m.

The displacement of a particle moving in a straight line, is given by s = 2t^2 + 2t + 4 where s is in metres and t in seconds. The acceleration of the particle is.

A particle is moving in a straight line. At time t the distance between the particle from its starting point is given by x=t-6t^(2)+t^(3) . Its acceleration will be zero at

A particle moves along a straight line. Its position at any instant is given by x = 32t-(8t^3)/3 where x is in metres and t in seconds. Find the acceleration of the particle at the instant when particle is at rest.

The position x of a particle varies with time t as x = 6 + 12t - 2 t^2 where x is in metre and in seconds. The distance travelled by the particle in first five seconds is

A particle is moving in a straight line. At time t, the distance between the particle from its starting point is given by x =t- 9t^(2) + t^(3) . lts acceleration will be zero at

The distance travelled by a particle in time t is given by x = kt^3 , where k = 10 m s^(-3) . The average speed of the particle from t = 1 s to t = 5 s is

The speed(v) of a particle moving along a straight line is given by v=(t^(2)+3t-4 where v is in m/s and t in seconds. Find time t at which the particle will momentarily come to rest.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.