Home
Class 12
PHYSICS
Given r=4hatjandp=2hati+3hatj+hatk. The ...

Given `r=4hatj`and`p=2hati+3hatj+hatk`. The angular momentum is

A

`4hati-8hatk`

B

`8hati-8hatk`

C

`8hatj`

D

`9hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angular momentum \( L \) given the position vector \( \mathbf{r} \) and momentum vector \( \mathbf{p} \), we use the formula: \[ \mathbf{L} = \mathbf{r} \times \mathbf{p} \] ### Step 1: Identify the vectors Given: - \( \mathbf{r} = 4\hat{j} \) - \( \mathbf{p} = 2\hat{i} + 3\hat{j} + 1\hat{k} \) ### Step 2: Write the vectors in component form We can express the vectors in component form: - \( \mathbf{r} = 0\hat{i} + 4\hat{j} + 0\hat{k} \) - \( \mathbf{p} = 2\hat{i} + 3\hat{j} + 1\hat{k} \) ### Step 3: Set up the determinant for the cross product To find the cross product \( \mathbf{L} = \mathbf{r} \times \mathbf{p} \), we can use the determinant of a matrix: \[ \mathbf{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 4 & 0 \\ 2 & 3 & 1 \end{vmatrix} \] ### Step 4: Calculate the determinant Now we calculate the determinant: \[ \mathbf{L} = \hat{i} \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 0 \\ 2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 4 \\ 2 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} = (4)(1) - (0)(3) = 4 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 0 & 0 \\ 2 & 1 \end{vmatrix} = (0)(1) - (0)(2) = 0 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 0 & 4 \\ 2 & 3 \end{vmatrix} = (0)(3) - (4)(2) = -8 \] ### Step 5: Combine the results Putting it all together, we have: \[ \mathbf{L} = 4\hat{i} - 0\hat{j} - 8\hat{k} \] Thus, the angular momentum vector is: \[ \mathbf{L} = 4\hat{i} - 8\hat{k} \] ### Final Answer The angular momentum \( \mathbf{L} \) is: \[ \mathbf{L} = 4\hat{i} - 8\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The radius vector and linear momentum are respectively given by vector 2hati+2hatj+hatk and 2hati-2hatj+hatk . Their angular momentum is

The position vectors of radius are 2hati+hatj+hatk and 2hati-3hatj+hatk while those of linear momentum are 2hati+3hatj-hatk . Then the angular momentum is

If for some particle its position vector and linear momentum are respectively be 2hati+hatj+hatk and 2hati-3hatj+hatk . Its angular momentum will be:

The position of a particle is given by vecr=(hati+2hatj-hatk) and momentum vecp=(3hati+4hatj-2hatk) . The angular momentum is perpendicular to the

A partical has the position vector r = hati - 2 hatj + hatk and the linear momentum p = 2 hati - hatj + hatk its angular momentum about the origin is

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + hatk are acting at the point P(0,1,2) . The moment of these forces about the point A(1,-2,0) is