Home
Class 12
PHYSICS
Find the de-Broglie wavelength of an ele...

Find the de-Broglie wavelength of an electron in a metal at `127^@C`. Given, mass of electron `=9.11xx10^(-31)kg`, Boltsmann constant `=1.38xx10^(-23)"J mole"^-1K^-1` , Plank constant `=6.63xx10^(-34)Js`.

A

`lambda=2.135A^@`

B

`lambda=1.413A^@`

C

`lambda=1.264A^@`

D

`lambda=3.142A^@`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the de Broglie wavelength associated with an electron in a metal at 42^@C of temperature . Take m_e=9.11xx10^(-31)kg .

Find de-Broglie wavelength of electron with KE =9.6xx10^(-19)J .

Find the de Broglie wavlength of a neutron at 127^circ C Given that Boltzmann's constant k=1.38xx10^(-23)J "molecule"^-1 K^-1 . Planck's constant =6.625xx10^(-34)Js , mass of neutron =1.66xx10^(-27)kg .

The de Broglie wavelength of an electron in a metal at 27^(@)C is ("Given"m_(e)=9.1xx10^(-31)kg,k_(B)=1.38xx10^(-23)JK^(-1))

Calculate the de Broglie wavelength of an electron moving with a velocity of 0.3c. Rest mass of an electron is 9.1xx10^(-31)kg.

The temperature of an ideal gas in 3- deimensions is 300 K. The corresponding de - Broglie wavelength of the electron approximately at 300 K , is : [ m_e = mass of electron = 9 xx 10^(-31) kg h = Planck constant = 6.6 xx 10^(-34) Js k_B = Boltzmann constant = 1.38 xx 10^(-33)JK^(-1) ]

Assuming the nitrogen molecule is moving with r.m.s. velocity at 400K, the de Broglie wavelength of nitrogen molecule is close to : (Given : nitrogen molecule weight : 4.64 xx 10^(-26) kg, BoItzman constant : 1.38 xx 10^(-23) j//K , Planck constant : 6.63 xx 10^(-34)J.s )

Find the de-Broglie wavelength associated with an electron moving with a velocity 0.5 c and rest mass = 9.1 xx 10^(-31) kg .

Calculate the de-Broglie wavelength of an electron of kinetic energy 100 eV. Given m_(e)=9.1xx10^(-31)kg, h=6.62xx10^(-34)Js .

The de - Broglie wavelength of an electron having 80 ev of energy is nearly ( 1eV = 1.6 xx 10^(-19) J , Mass of electron = 9 xx 10^(-31) kg Plank's constant = 6.6 xx 10^(-34) J - sec )