Home
Class 8
MATHS
Find the value of   ( a^4 - a^2*b^2 ) ÷ ...

Find the value of   `( a^4 - a^2*b^2 ) ÷ a^2 `  is
( a )   `x^2( a - b )^2`
( b )   `( a + b )( a - b )`
( c )   `b ( a - b )`
( d )   `a ( a - b )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( a^2/b^2 + b^2/a^2 ) is ( a ) ( a/b + b/a )^2 - 2 ( b ) ( a/b + b/a )^2 + 2 ( c ) ( a/b + b/a )^2 + 4 ( d ) ( a/b + b/a )^2 - 4

Find the value of ( a + b )^2 - 2 ( a - b )^2 + ( a - b ) ( a + b )

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

If   ( a -5 )^2 + ( b - c )^2 + ( c - d )^2 + ( b + c + d - 9 )^2 = 0 , then find the value of ( a + b + c ) ( b + c + d ) is

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

Find the values of a a n d b if A=B , where A=[a+4 3b8-6] , B=[2a+2b^2+2 8b^2-56]

If x+2 is a factor of x^2+a x+2b and a+b=4 , then (a) a=1, b=3 (b) a=3, b=1 (c) a=-1, b=5 (d) a=5, b=-1