Home
Class 10
MATHS
If tantheta = (3)/( 4) find the value ...

If `tantheta = (3)/( 4)` find the value of `((1-cos^(2)theta)/(1+cos^(2)theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}\) given that \(\tan \theta = \frac{3}{4}\). ### Step-by-Step Solution: 1. **Use the identity for sine and cosine**: We know that \(\sin^2 \theta + \cos^2 \theta = 1\). From this, we can express \(\sin^2 \theta\) as: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Therefore, we can rewrite the expression: \[ \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \] 2. **Find \(\sin \theta\) and \(\cos \theta\) using \(\tan \theta\)**: Given \(\tan \theta = \frac{3}{4}\), we can consider a right triangle where the opposite side is 3 and the adjacent side is 4. The hypotenuse \(h\) can be calculated using the Pythagorean theorem: \[ h = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Now, we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5}, \quad \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \] 3. **Calculate \(\sin^2 \theta\) and \(\cos^2 \theta\)**: \[ \sin^2 \theta = \left(\frac{3}{5}\right)^2 = \frac{9}{25}, \quad \cos^2 \theta = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] 4. **Substitute \(\sin^2 \theta\) and \(\cos^2 \theta\) into the expression**: Now substitute \(\sin^2 \theta\) and \(\cos^2 \theta\) into the expression we derived: \[ \frac{\sin^2 \theta}{1 + \cos^2 \theta} = \frac{\frac{9}{25}}{1 + \frac{16}{25}} = \frac{\frac{9}{25}}{\frac{25 + 16}{25}} = \frac{\frac{9}{25}}{\frac{41}{25}} \] 5. **Simplify the expression**: Dividing by a fraction is the same as multiplying by its reciprocal: \[ = \frac{9}{25} \times \frac{25}{41} = \frac{9}{41} \] ### Final Answer: Thus, the value of \(\frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}\) is \(\frac{9}{41}\).
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - C|11 Videos
  • SAMPLE PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - D|9 Videos
  • SAMPLE PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - A Very short Answer Type Questions|5 Videos
  • SAMPLE PAPER 01

    EDUCART PUBLICATION|Exercise PART-B (SECTION-V)|4 Videos
  • SAMPLE PAPER 03

    EDUCART PUBLICATION|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If tan theta = (3)/(4) , find the value of ((1 - cos^(2) theta)/(1 + cos^(2) theta))

If tan theta=(3)/(4), find the value of (1-cos theta)/(1+cos theta)

If tan theta=(3)/(4), find the value of (1-cos theta)/(1+cos theta)

If cot theta=(1)/(sqrt(3)), find the value of (1-cos^(2)theta)/(2-sin^(2)theta)

If pi

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If sintheta+sin^(2)theta=1 , then find the value of cos^(2)theta+cos^(4)theta .

If pi

If cos theta=-(1)/(2) and pi

If sin theta+sin^(2)theta=1 find the value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta+2cos^(4)theta+2cos^(2)theta-2