Home
Class 10
MATHS
Taking A=30^(@), verify the following: ...

Taking `A=30^(@)`, verify the following:
`tan2A=(2tanA)/(1-tan^(2)A)`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the equation \( \tan(2A) = \frac{2\tan(A)}{1 - \tan^2(A)} \) for \( A = 30^\circ \), we will calculate both the left-hand side (LHS) and the right-hand side (RHS) and check if they are equal. ### Step 1: Calculate LHS The left-hand side is given by: \[ \text{LHS} = \tan(2A) = \tan(2 \times 30^\circ) = \tan(60^\circ) \] From trigonometric values, we know: \[ \tan(60^\circ) = \sqrt{3} \] ### Step 2: Calculate RHS The right-hand side is given by: \[ \text{RHS} = \frac{2\tan(A)}{1 - \tan^2(A)} = \frac{2\tan(30^\circ)}{1 - \tan^2(30^\circ)} \] We know: \[ \tan(30^\circ) = \frac{1}{\sqrt{3}} \] Now substituting this value into the RHS: \[ \text{RHS} = \frac{2 \cdot \frac{1}{\sqrt{3}}}{1 - \left(\frac{1}{\sqrt{3}}\right)^2} \] Calculating \( \tan^2(30^\circ) \): \[ \tan^2(30^\circ) = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Now substituting this into the RHS: \[ \text{RHS} = \frac{2 \cdot \frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{2 \cdot \frac{1}{\sqrt{3}}}{\frac{2}{3}} \] Now simplify the fraction: \[ \text{RHS} = \frac{2 \cdot \frac{1}{\sqrt{3}} \cdot 3}{2} = \frac{3}{\sqrt{3}} = \sqrt{3} \] ### Step 3: Compare LHS and RHS Now we have: \[ \text{LHS} = \sqrt{3} \quad \text{and} \quad \text{RHS} = \sqrt{3} \] Since LHS = RHS, we have verified that: \[ \tan(2A) = \frac{2\tan(A)}{1 - \tan^2(A)} \quad \text{is true for} \quad A = 30^\circ. \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise PART - B (SECTION - IV) |9 Videos
  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V) |4 Videos
  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise PART - A (SECTION - II) |20 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise PART-B(SECTION-V)|5 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION- C |10 Videos