Home
Class 10
MATHS
If k + 1 = sec^2A(1 - sin A) (1 + sin A)...

If k + 1 = `sec^2A`(1 - sin A) (1 + sin A), then the value of k is:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( k + 1 = \sec^2 A (1 - \sin A)(1 + \sin A) \), we can follow these steps: ### Step 1: Simplify the Right Side We start with the expression on the right side: \[ (1 - \sin A)(1 + \sin A) \] Using the identity \( (a - b)(a + b) = a^2 - b^2 \), we can simplify this: \[ (1 - \sin A)(1 + \sin A) = 1^2 - (\sin A)^2 = 1 - \sin^2 A \] ### Step 2: Substitute the Identity Now we substitute this result back into the equation: \[ k + 1 = \sec^2 A (1 - \sin^2 A) \] ### Step 3: Use the Pythagorean Identity We know from trigonometric identities that: \[ 1 - \sin^2 A = \cos^2 A \] So we can rewrite the equation as: \[ k + 1 = \sec^2 A \cdot \cos^2 A \] ### Step 4: Simplify Secant and Cosine Recall that: \[ \sec A = \frac{1}{\cos A} \implies \sec^2 A = \frac{1}{\cos^2 A} \] Thus, we have: \[ k + 1 = \frac{1}{\cos^2 A} \cdot \cos^2 A \] ### Step 5: Cancel Out Cosine Terms Now, we can cancel \(\cos^2 A\) from the numerator and the denominator: \[ k + 1 = 1 \] ### Step 6: Solve for k To find \(k\), we subtract 1 from both sides: \[ k = 1 - 1 = 0 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -5

    EDUCART PUBLICATION|Exercise SECTION-B|19 Videos
  • SAMPLE PAPER -5

    EDUCART PUBLICATION|Exercise SECTION-C|11 Videos
  • SAMPLE PAPER - 3

    EDUCART PUBLICATION|Exercise SECTION-C|10 Videos
  • SAMPLE PAPER -6

    EDUCART PUBLICATION|Exercise Part - B (Section - V) |6 Videos