Home
Class 10
MATHS
The value of (sin^3theta+cos^3theta)/(si...

The value of `(sin^3theta+cos^3theta)/(sintheta+costheta)`+sin `theta` cos `theta` is:

A

sin `theta` cos `theta`

B

tan `theta`

C

cot`theta`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} + \sin \theta \cos \theta\), we will follow these steps: ### Step 1: Use the identity for the sum of cubes We can use the identity for the sum of cubes, which states: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Here, let \(A = \sin \theta\) and \(B = \cos \theta\). Thus, we have: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \] ### Step 2: Substitute the identity into the expression Substituting this back into our expression gives: \[ \frac{(\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)}{\sin \theta + \cos \theta} + \sin \theta \cos \theta \] Since \(\sin \theta + \cos \theta\) is not zero, we can cancel it out: \[ \sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta + \sin \theta \cos \theta \] ### Step 3: Simplify the expression Now we simplify the remaining expression: \[ \sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta + \sin \theta \cos \theta \] The \(-\sin \theta \cos \theta\) and \(+\sin \theta \cos \theta\) cancel each other out, leaving us with: \[ \sin^2 \theta + \cos^2 \theta \] ### Step 4: Apply the Pythagorean identity Using the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] ### Final Result Thus, the value of the original expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -5

    EDUCART PUBLICATION|Exercise SECTION-B|19 Videos
  • SAMPLE PAPER -5

    EDUCART PUBLICATION|Exercise SECTION-C|11 Videos
  • SAMPLE PAPER - 3

    EDUCART PUBLICATION|Exercise SECTION-C|10 Videos
  • SAMPLE PAPER -6

    EDUCART PUBLICATION|Exercise Part - B (Section - V) |6 Videos

Similar Questions

Explore conceptually related problems

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Prove (sin^3theta+cos^3theta)/(sintheta+costheta)=1-sinthetacostheta

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

The value of (sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3 theta - sin^3 theta))/(cos theta - sin theta) is

(sintheta+sin2theta)/(1+costheta+cos2theta) =

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

costheta-cos2theta=sin3theta

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

If tantheta=1 , then the value of (8sintheta+5cos theta)/(sin^(3)theta-2cos^(3)theta+7costheta) is