Home
Class 10
MATHS
Find the value of sqrt(cosec^(2) 45^(@) ...

Find the value of `sqrt(cosec^(2) 45^(@) - cot^(2) 45^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{\csc^2 45^\circ - \cot^2 45^\circ} \). ### Step-by-Step Solution: 1. **Identify the Trigonometric Values**: - We need to find the values of \( \csc^2 45^\circ \) and \( \cot^2 45^\circ \). - \( \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \) - Therefore, \( \csc^2 45^\circ = (\sqrt{2})^2 = 2 \). - \( \cot 45^\circ = \frac{\cos 45^\circ}{\sin 45^\circ} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 \) - Thus, \( \cot^2 45^\circ = 1^2 = 1 \). 2. **Substitute the Values**: - Now substitute these values into the expression: \[ \sqrt{\csc^2 45^\circ - \cot^2 45^\circ} = \sqrt{2 - 1} \] 3. **Simplify the Expression**: - Simplifying the expression inside the square root: \[ \sqrt{2 - 1} = \sqrt{1} \] 4. **Find the Final Value**: - The square root of 1 is: \[ \sqrt{1} = 1 \] ### Final Answer: Thus, the value of \( \sqrt{\csc^2 45^\circ - \cot^2 45^\circ} \) is \( 1 \). ---
Promotional Banner