Home
Class 10
MATHS
If alpha and beta are the zeros of the p...

If `alpha` and `beta` are the zeros of the polynomial `p(x) = x^(2) - px + q`,
then find the value of `(1)/(alpha)+(1)/(beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the zeros of the polynomial \( p(x) = x^2 - px + q \), we can follow these steps: ### Step 1: Use the relationship of zeros The expression \( \frac{1}{\alpha} + \frac{1}{\beta} \) can be rewritten using the formula for the sum of the reciprocals of the roots: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] ### Step 2: Identify the sum and product of the roots From Vieta's formulas, for the polynomial \( p(x) = x^2 - px + q \): - The sum of the roots \( \alpha + \beta = p \) - The product of the roots \( \alpha \beta = q \) ### Step 3: Substitute the values into the expression Now, substituting the values from Vieta's formulas into the expression we derived: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{p}{q} \] ### Final Answer Thus, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) is: \[ \frac{p}{q} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 then find the value of ((alpha)/(beta)+(beta)/(alpha)) .

If a, ß are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/alpha + 1/beta .

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).

If alpha and beta be the zeroes of the polynomial p(x)=x^(2)-5x+2 , find the value of (1)/(alpha)+(1)/(beta)-3alphabeta.

If alpha and beta are the zeros of the quadratic polynomial f(x)=5x^(2)-7x+1, find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-5x+4 , find the value of (1)/(alpha)+(1)/(beta)-2 alpha beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, then find the values of (i)alpha^(2)+beta^(2)( ii) (1)/(alpha)+(1)/(beta)