Home
Class 10
MATHS
If x=49, then x^(3) - 5x^(2) - 2x - 6=?...

If `x=49`, then `x^(3) - 5x^(2) - 2x - 6=?`

A

53040

B

93990

C

1,05,540

D

1,16,040

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^3 - 5x^2 - 2x - 6 \) for \( x = 49 \), we will follow these steps: ### Step 1: Substitute the value of \( x \) We start by substituting \( x = 49 \) into the expression. \[ 49^3 - 5 \cdot 49^2 - 2 \cdot 49 - 6 \] ### Step 2: Calculate \( 49^3 \) Now, we calculate \( 49^3 \). \[ 49^3 = 49 \times 49 \times 49 \] First, calculate \( 49 \times 49 \): \[ 49 \times 49 = 2401 \] Now multiply by 49 again: \[ 2401 \times 49 = 117649 \] So, \( 49^3 = 117649 \). ### Step 3: Calculate \( 5 \cdot 49^2 \) Next, we calculate \( 5 \cdot 49^2 \). \[ 49^2 = 2401 \quad \text{(from previous calculation)} \] Now multiply by 5: \[ 5 \cdot 2401 = 12005 \] ### Step 4: Calculate \( 2 \cdot 49 \) Now we calculate \( 2 \cdot 49 \): \[ 2 \cdot 49 = 98 \] ### Step 5: Combine all the calculated values Now we can substitute all the calculated values back into the expression: \[ 117649 - 12005 - 98 - 6 \] ### Step 6: Perform the subtraction Now, we will perform the subtraction step-by-step: 1. First, subtract \( 12005 \) from \( 117649 \): \[ 117649 - 12005 = 105644 \] 2. Next, subtract \( 98 \): \[ 105644 - 98 = 105546 \] 3. Finally, subtract \( 6 \): \[ 105546 - 6 = 105540 \] ### Final Answer Thus, the value of \( x^3 - 5x^2 - 2x - 6 \) when \( x = 49 \) is: \[ \boxed{105540} \]
Promotional Banner