Home
Class 10
MATHS
Evaluate: (sin^(4) 60^(@) + sec^(4) 30^(...

Evaluate: `(sin^(4) 60^(@) + sec^(4) 30^(@)) - 2 (cos^(2) 45^(@) - sin^(2) 90^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression `(sin^4 60° + sec^4 30°) - 2 (cos^2 45° - sin^2 90°)`, we will follow these steps: ### Step 1: Calculate \( \sin 60° \) and \( \sec 30° \) We know: - \( \sin 60° = \frac{\sqrt{3}}{2} \) - \( \sec 30° = \frac{1}{\cos 30°} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \) ### Step 2: Calculate \( \sin^4 60° \) and \( \sec^4 30° \) Now we will calculate: - \( \sin^4 60° = \left(\frac{\sqrt{3}}{2}\right)^4 = \frac{3^2}{2^4} = \frac{9}{16} \) - \( \sec^4 30° = \left(\frac{2}{\sqrt{3}}\right)^4 = \frac{2^4}{(\sqrt{3})^4} = \frac{16}{9} \) ### Step 3: Substitute into the expression Now substitute these values into the expression: \[ \sin^4 60° + \sec^4 30° = \frac{9}{16} + \frac{16}{9} \] ### Step 4: Find a common denominator and add The common denominator for \( \frac{9}{16} \) and \( \frac{16}{9} \) is \( 144 \): - Convert \( \frac{9}{16} \) to \( \frac{81}{144} \) (by multiplying numerator and denominator by 9) - Convert \( \frac{16}{9} \) to \( \frac{256}{144} \) (by multiplying numerator and denominator by 16) Now add them: \[ \frac{81}{144} + \frac{256}{144} = \frac{337}{144} \] ### Step 5: Calculate \( \cos^2 45° \) and \( \sin^2 90° \) Next, we calculate: - \( \cos 45° = \frac{1}{\sqrt{2}} \) so \( \cos^2 45° = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \) - \( \sin 90° = 1 \) so \( \sin^2 90° = 1^2 = 1 \) ### Step 6: Substitute into the second part of the expression Now substitute these values into the second part: \[ 2 (cos^2 45° - sin^2 90°) = 2 \left(\frac{1}{2} - 1\right) = 2 \left(\frac{1}{2} - \frac{2}{2}\right) = 2 \left(-\frac{1}{2}\right) = -1 \] ### Step 7: Combine both parts of the expression Now combine both parts: \[ \left(\frac{337}{144}\right) - (-1) = \frac{337}{144} + 1 = \frac{337}{144} + \frac{144}{144} = \frac{481}{144} \] ### Final Answer Thus, the final answer is: \[ \frac{481}{144} \]
Promotional Banner