Home
Class 10
MATHS
Prove that (sin theta - 2 sin^(3) theta)...

Prove that `(sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta`

Text Solution

Verified by Experts

The correct Answer is:
R.H.S
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

Prove that :(sin5 theta-2sin3 theta+sin theta)/(cos5 theta-cos theta)=tan theta

Prove that :(sin5 theta+sin3 theta)/(cos5 theta+cos3 theta)=tan4 theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

(sin theta+sin3 theta+sin5 theta)/(cos theta+cos3 theta+cos5 theta)=tan3 theta

Prove that (sin theta - cos theta +1)/(sin theta + cos theta -1) = (1)/((sec theta - tan theta)).

Prove that :(sin theta+sin3 theta+sin5 theta)/(cos theta+cos3 theta+cos5 theta)=tan3 theta