Home
Class 12
MATHS
The simplest form of &nbsp (1)/(2) cos^(...

The simplest form of   `(1)/(2) cos^(-1) ((1-x)/(1+x)), x in [0,1]` is

A

`tan^(-1) sqrt(x)`

B

`sin^(-1)x`

C

`cos^(-1) sqrt(x)`

D

`sec^(-1) x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the simplest form of the expression \(\frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)\) for \(x \in [0,1]\), we can follow these steps: ### Step-by-Step Solution: 1. **Recognize the Expression**: We start with the expression: \[ y = \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) \] 2. **Use a Trigonometric Identity**: We know from trigonometric identities that: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] If we let \(x = \tan^2 \theta\), then: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] 3. **Substituting \(x\)**: Substitute \(x = \tan^2 \theta\) into our expression: \[ y = \frac{1}{2} \cos^{-1} \left( \cos(2\theta) \right) \] 4. **Simplifying the Inverse Cosine**: The property of inverse cosine states that: \[ \cos^{-1}(\cos A) = A \quad \text{for } A \in [0, \pi] \] Thus: \[ y = \frac{1}{2} \cdot 2\theta = \theta \] 5. **Finding \(\theta\)**: Since we defined \(\theta\) as: \[ \theta = \tan^{-1}(\sqrt{x}) \] Therefore, we have: \[ y = \tan^{-1}(\sqrt{x}) \] 6. **Final Result**: Thus, the simplest form of the expression \(\frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)\) is: \[ \tan^{-1}(\sqrt{x}) \] ### Conclusion: The simplest form of \(\frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)\) is \(\tan^{-1}(\sqrt{x})\). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos