Home
Class 12
MATHS
If P =[(3,4),(-1,2),(0,1)] and Q = [(-1,...

If `P =[(3,4),(-1,2),(0,1)] and Q = [(-1, 2,1),(1,2,3)]`, then `(P^(T) + Q)=`

A

`[(2,5),(1,4),(1,4)]`

B

`[(4,7),(1,3),(9,2)]`

C

`[(2,1,1),(5,4,4)]`

D

`[(4,1,9),(7,3,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P^T + Q \), where \( P \) and \( Q \) are given matrices. Let's break it down step by step. ### Step 1: Define the matrices \( P \) and \( Q \) Given: \[ P = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \] \[ Q = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \] ### Step 2: Calculate the transpose of matrix \( P \) The transpose of a matrix is obtained by swapping its rows with columns. Thus, the transpose \( P^T \) will be: \[ P^T = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} \] ### Step 3: Add matrices \( P^T \) and \( Q \) Now, we need to add \( P^T \) and \( Q \). Before we proceed, we should confirm that both matrices have the same dimensions. - \( P^T \) is a \( 2 \times 3 \) matrix. - \( Q \) is also a \( 2 \times 3 \) matrix. Since both matrices have the same dimensions, we can add them. The addition is performed element-wise: \[ P^T + Q = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \] Calculating the sum: - First row: - \( 3 + (-1) = 2 \) - \( -1 + 2 = 1 \) - \( 0 + 1 = 1 \) - Second row: - \( 4 + 1 = 5 \) - \( 2 + 2 = 4 \) - \( 1 + 3 = 4 \) Thus, we have: \[ P^T + Q = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{pmatrix} \] ### Final Answer: \[ P^T + Q = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos

Similar Questions

Explore conceptually related problems

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If P=[{:(3,4),(2,-1),(0,5):}]" and "Q=[{:(7,-5),(-4," "0),(2," "6):}] , verify that (P+Q)'=(P'+Q').

If P={:[(2,-1),(-1,3)]:},Q={:[(1,-2),(-3,0)]:}andR={:[(-2,1),(2,-1)]:} . then find PQ+PR.

If {:[(2,4),(p,1)]:}{:[(-1,2),(3,1)]:}={:[(10,q),(-2,r)]:} , then pq= _______ .

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

If P=[[1,2,-3] , [3,-1,2] , [-2,1,3]], Q=[[2,3,1] ,[3,1,2] , [1,2,3]] then find the matrix R such that P+Q+R is a zero matrix