Home
Class 12
MATHS
If y = a sin x + b cos x," then "y^(2) +...

If `y = a sin x + b cos x," then "y^(2) + ((dy)/(dx))^(2)` =

A

`a^(2)-b^(2)`

B

`a^(2) +b^(2)`

C

`2a^(2)`

D

`2b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( y^2 + \left( \frac{dy}{dx} \right)^2 \) given that \( y = a \sin x + b \cos x \). ### Step-by-Step Solution: 1. **Write the expression for \( y \)**: \[ y = a \sin x + b \cos x \] 2. **Calculate \( y^2 \)**: \[ y^2 = (a \sin x + b \cos x)^2 \] Expanding this using the formula \( (A + B)^2 = A^2 + B^2 + 2AB \): \[ y^2 = a^2 \sin^2 x + b^2 \cos^2 x + 2ab \sin x \cos x \] 3. **Calculate \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{d}{dx}(a \sin x + b \cos x) = a \cos x - b \sin x \] 4. **Calculate \( \left( \frac{dy}{dx} \right)^2 \)**: \[ \left( \frac{dy}{dx} \right)^2 = (a \cos x - b \sin x)^2 \] Expanding this: \[ \left( \frac{dy}{dx} \right)^2 = a^2 \cos^2 x + b^2 \sin^2 x - 2ab \sin x \cos x \] 5. **Add \( y^2 \) and \( \left( \frac{dy}{dx} \right)^2 \)**: \[ y^2 + \left( \frac{dy}{dx} \right)^2 = \left( a^2 \sin^2 x + b^2 \cos^2 x + 2ab \sin x \cos x \right) + \left( a^2 \cos^2 x + b^2 \sin^2 x - 2ab \sin x \cos x \right) \] 6. **Combine like terms**: \[ = a^2 \sin^2 x + b^2 \cos^2 x + 2ab \sin x \cos x + a^2 \cos^2 x + b^2 \sin^2 x - 2ab \sin x \cos x \] The \( 2ab \sin x \cos x \) and \( -2ab \sin x \cos x \) cancel each other out: \[ = a^2 \sin^2 x + b^2 \sin^2 x + a^2 \cos^2 x + b^2 \cos^2 x \] \[ = (a^2 + b^2)(\sin^2 x + \cos^2 x) \] 7. **Use the Pythagorean identity**: Since \( \sin^2 x + \cos^2 x = 1 \): \[ y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 + b^2 \] ### Final Answer: \[ y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 + b^2 \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
EDUCART PUBLICATION- SAMPLE PAPER 8-SECTION - B
  1. If f(x)= {:{((x^(2)-4)/(x-2)", for " x!=2),(5", for " x=2):}, then at ...

    Text Solution

    |

  2. The function f: R rarr R defined as f (x) = x^(2) + 1 is:

    Text Solution

    |

  3. The diagonal elements of a skew-symmetric matrix are:

    Text Solution

    |

  4. The value of tan^(-1) [2 sin (cos^(-1) ""(1)/(2))] is

    Text Solution

    |

  5. If A is a square matrix of order 4 with |A| = 5, then the value of | ...

    Text Solution

    |

  6. If x = a (theta + sin theta), y = b (1+ cos theta), then (dy)/(dx)" at...

    Text Solution

    |

  7. For the function f (x)= x^(3) - 3x + 7 , choose the correct option

    Text Solution

    |

  8. Find the point on the curve 9y^2=x^3, where the normal to the curve ma...

    Text Solution

    |

  9. the corner points of the feasible region of a system of linear inequal...

    Text Solution

    |

  10. The relation R, in the set of real number defined as R = {(a,b): a lt ...

    Text Solution

    |

  11. If [(2,-1),(3,4)][(5,2),(7,4)]=[(3,x),(y,22)]. Then the value of x + y...

    Text Solution

    |

  12. If matrix A=[2-2-2 2] and A^2=p A , then write the value of pdot

    Text Solution

    |

  13. In the interval ((pi)/(4), (11 pi)/(12)), then function f (x) = sin 3x...

    Text Solution

    |

  14. The principal value of sin^(-1) (sin""(3 pi)/(5)) is :

    Text Solution

    |

  15. If we represent the linear equations x + y - z = 3, 2x + 3y + z = 10 a...

    Text Solution

    |

  16. The corner points of the feasible region of a system of linear inequat...

    Text Solution

    |

  17. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  18. If y = a sin x + b cos x," then "y^(2) + ((dy)/(dx))^(2) =

    Text Solution

    |

  19. If B = [(2,3),(5,-2)], then find the inverse of B

    Text Solution

    |

  20. The elements a(ij) of a 2xx2 matrix are given by a(ij) = (1)/(4) |-3 i...

    Text Solution

    |