Home
Class 12
MATHS
The value of 1+i^2+i^4+i^6+…+i^(2n) is...

The value of
`1+i^2+i^4+i^6+…+i^(2n)` is

A

positive

B

negative

C

zero

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

Find the value of 1+i^2+i^4+i^6

Find the value of : i^4 + i^5 + i^6 + i^7

Find the value of : i^4 + i^5 + i^6 + i^7

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n)

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

The value of i^(2)+i^(4)+i^(6)+i^(8)... upto (2n+1) terms,where i^(2)=-1, is equal to:

The value of i+i^(2)+i^(4)+i^(7) is