Home
Class 12
MATHS
If zr=cos(ralpha)/n^2+isin(ralpha)/n^2, ...

If `z_r=cos(ralpha)/n^2+isin(ralpha)/n^2`, where r=1,2,3,…,n, then `lim_(nrarrinfty)z_1z_2z_3...z_n` is equal to

A

`cos alpha +isin alpha`

B

`cos(alpha/2)-lsin(alpha/2)`

C

`e^(lalphal2)`

D

`root(3)(e^(ialpha))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(r)=(cos(pi alpha))/(n^(2))+i(sin(r alpha))/(n^(2)), where r=1,2,3...,n, then lim_(n rarr oo)z_(1)z_(2)z_(3)...z_(n) is equal to

If z_(n)=cos((pi)/((2n+1)(2n+3)))+i sin((pi)/((2n+1)(2n+3))) ,then lim_(n rarr oo)(z_(1)*z_(2)*z_(3)...z_(n))=

If z_r=cos(pi/3^r)+i sin(pi/3^r) where r in N then z_1.z_2.z_3...oo=

If z_(r)=cos((pi)/(3^(r)))+i sin((pi)/(3^(r))),r=1,2,3 prove that z_(1)z_(2)z_(3)z_(oo)=i

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

Let |Z_(r) - r| le r , for all r = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Find the value of lim_(n rarr oo)cos[pi sqrt(n^(2)+n)],n in Z is equal to

Let z=a+ib=re^(i theta) where a, b, theta in R and i=sqrt(-1) Then r=sqrt((a^(2)+b^(2)))=|Z| and theta=tan^(-1)((b)/(a))=arg(z) Now |z|^(2)=a^(2)+b^(2)=(a+ib)(a-ib)=zbar(z) rArr(1)/(2)=(bar(z))/(|z|^(2)) and |z_(1)z_(2)z_(3)......z_(n)|=|z_(1)||z_(2)||z_(3)|...|z_(n)| If |f(z)|=1 ,then f(z) is called unimodular. In this case f(z) can always be expressed as f(z)=e^(i alpha), alpha in R Also e^(i alpha)+e^(i beta)=e^(i((alpha+beta)/(2)))*2cos((alpha-beta)/(2)) and e^(i alpha)-e^(i beta)=e^(i((alpha+beta)/(2)))*2i sin((alpha-beta)/(2)) where alpha, beta in R Q:If Z_(1),Z_(2),Z_(3) are complex number such that |Z_(1)|=|Z_(2)|=|Z_(3)|=|Z_(1)+Z_(2)+Z_(3)|=1 , then |(1)/(Z_(1))+(1)/(Z_(2))+(1)/(Z_(3))| is

|z|=1&z^(2n)+1!=0 then (z^(n))/(z^(2n)+1)-(z^(n))/(z^(2n)+1) is equal to

Let arg(z_(k))=((2k+1)pi)/(n) where k=1,2,………n . If arg(z_(1),z_(2),z_(3),………….z_(n))=pi , then n must be of form (m in z)