Home
Class 12
MATHS
The sum of 1(1!)+2(2!)+3(3!)+….+n(n!) is...

The sum of `1(1!)+2(2!)+3(3!)+….+n(n!)` is equal to

A

`3(n!)+n-3`

B

`(n+1)!-(n-1)!`

C

`(n+1)!-1!`

D

`2(n!)-2n-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

1+1.1!+2.2!+3.3!+......n.n! is equal to

The sum 1 + 3 + 3^(2) + …+ 3^(n) is equal to

If 1+x^(2)=sqrt(3)x, then sum_(n=1)^(24)(x^(n)-(1)/(x^(n))) is equal to

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.