Home
Class 12
MATHS
If (alpha + sqrt(beta)) and (alpha - sqr...

If `(alpha + sqrt(beta))` and `(alpha - sqrt(beta))` are the roots of the equation
`x^2+px+q=0`, where `alpha, beta`, p and q are real, then the roots of the equation
`(p^2-4q)(p^2x^2+4px)-16q=0` are

A

`(1/alpha+1/sqrtbeta)` and '(1/alpha-1/sqrtbeta)`

B

`(1/sqrtalpha+1/beta)` and '(1/sqrtalpha-1/beta)`

C

`(1/sqrtalpha+1/sqrtbeta)` and '(1/sqrtalpha-1/sqrtbeta)`

D

`(sqrtalpha+sqrtbeta)` and '(sqrtalpha-sqrtbeta)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If (alpha+sqrt(beta)) and (alpha-sqrt(beta)) are the roots of the equation x^(2)+px+q=0 where alpha,beta,p and q are real,then the roots of the equation (p^(2)-4q)(p^(2)x^(2)+4px)-16q=0 are

If tan alpha tan beta are the roots of the equation x^(2)+px+q=0(p!=0) then

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation.

If alpha and beta are the roots of the equation x^(2) + px + q =0, then what is alpha ^(2) + beta ^(2) equal to ?

If alpha and beta are the roots of the equation x^(2)-px +16=0 , such that alpha^(2)+beta^(2)=9 , then the value of p is

if alpha and beta are the roots of the equatio0n x^2+px+q=0 and does not have real roots then (alpha-beta)^2 =

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation x^(2)-px+q=0 (b) x^(2)+px+q=0( c) qx^(2)+px+1=0 (d) q^(2)-px+1=0