Home
Class 12
MATHS
If A=[(cos^2 alpha,cosalpha sin alpha),(...

If `A=[(cos^2 alpha,cosalpha sin alpha),(cos alphasin alpha,sin^2alpha)]`and` B=[(cos^2beta,cosbeta sinbeta),(cosbetasinbeta,sin^2beta)]`
are two matrices such that the product AB is a null matrix, then `alpha-beta` is equal to

A

0

B

an odd multiple of `pi//2`

C

multiple or `pi`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

{:A=[(cos^2 alpha,cosalphasinalpha),(cosalphasinalpha,sin^2alpha)]:} {:B=[(cos^2 beta,cosbetasinbeta),(cosbetasinbeta,sin^2beta)]:} are two matrices such that the product AB is the null matrix, then (alpha-beta) is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If neither alpha nor beta is a multiple of pi/2 and the product AB of matrices A=[(cos^2alpha, cosalpha sin alpha),(cosalpha sinalpha, sin^2alpha)] and B=[(cos^2beta, cosbeta sinbeta),(cosbetasinbeta, sin^2beta)] is a null matrix then alpha- beta is (A) 0 (B) an odd mutiple of pi/2 (C) a multiple of pi (D) none of these

Prove that the product of the matrices [[cos^2alpha, cosalphasinalpha],[cosalphasinalpha,sin^2alpha]] and [[cos^2beta,cosbetasinbeta],[cosbetasinbeta,sin^beta]] is the null matrix when alpha and beta differ by an odd multiple of pi/ 2.

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

Evaluate ,,,|cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha,cos beta,sin alpha sin beta,cos alpha]|

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

Prove that |[cos alpha cos beta, cos alpha sin beta , sin alpha],[-sinbeta,cosbeta,0],[sinalpha cosbeta, sinalpha sinbeta, cos alpha]|=cos2alpha