Home
Class 12
MATHS
|(cosalphacosbeta,cosalphasinbeta,-sinal...

`|(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha)|` is equal to

A

`sin(alpha+beta)`

B

`cos(alpha+beta)`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

Prove that |[cos alpha cos beta, cos alpha sin beta , sin alpha],[-sinbeta,cosbeta,0],[sinalpha cosbeta, sinalpha sinbeta, cos alpha]|=cos2alpha

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

The expression (sinalpha+sinbeta)/(cosalpha+cosbeta) is equal to

Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) , then sinalpha+cosalphaandsinalpha-cosalpha are equal to

|{:(1,cos alpha, cos beta),(cos alpha, 1,cosgamma),(cosbeta,cosgamma,1):}|=|{:(0,cosalpha,cosbeta),(cosalpha,0,cosbeta),(cosbeta,cosgamma,0):}| if cos^(2)alpha+cos^(2)beta+cos^(2)gamma=