Home
Class 12
MATHS
|(alpha,alpha^2,beta+gamma),(beta,beta^2...

`|(alpha,alpha^2,beta+gamma),(beta,beta^2 ,gamma+alpha),(gamma,gamma^2,alpha+beta)| ` is equal to

A

`(beta-gamma)(gamma-alpha)(alpha-beta)`

B

`(alpha+beta)(beta+gamma)(gamma+alpha)`

C

`(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Using peoperties of determinants in questions 11 to 15, prove that : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta+gamma)

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2))| is equal to :

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

The value of the determinant |{:(1-alpha,alpha-alpha^(2),alpha^(@)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2)):}| is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to