Home
Class 12
MATHS
The value of determinant [((a^x+a^(-x))^...

The value of determinant `[((a^x+a^(-x))^2,(a^x-a^(-x))^2,1),((b^x+b^(-x))^2,(b^x-b^(-x))^2,1),((c^x+c^(-x))^2,(c^x-c^(-x))^2,1)]` is

A

0

B

2abc

C

`a^2b^2c^2`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |((a^x+a^-x)^2 (a^x-a^-x)^2 1) (b^x+b^-x)^2 (b^x-b^-x)^2 1) (c^x+c^-x)^2 (c^x-c^-x)^2 1)| (A) is 0 (B) is independent of a (C) depends on b only (D) depends on a,b,and c

If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to

If a,b,c>0 and x,y,z in R then |[(a^x+a^(-x))^2, (a^x-a^(-x))^2, 1] , [(b^y+b^(-y))^2, (b^y-b^(-y))^2, 1], [(c^z+c^(-z))^2, (c^z-c^(-z))^2, 1]|=

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|

" 0.The value of the determinant "|[1,x,x^(2)],[1,b,b^(2)],[1,c,c^(2)]|" is: "

Prove that: ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

Prove that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)x((x6b)/(x^(c)))^(b)-2+bc+c^(2)x((x^(c))/(x^(a)))^(c)-2+ca+a^(2)