Home
Class 12
MATHS
The expression ("cos" 4x+"cos" 3x+"cos"2...

The expression `("cos" 4x+"cos" 3x+"cos"2x)/("sin" 4x+"sin" 3x+ "sin" 2x)` is equal to

A

`-cot 3x`

B

cot 3x

C

cot 2x

D

`-cat 2x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ( " cos " 4x + " cos " 3x + " cos " 2x)/(" sin " 4x + " sin " 3x + " sin " 2x) = " cot 3x

(cos 9x - cos 5x)/(sin 17x - sin 3x) = (-sin 2x)/(cos 10x)

(cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cot3x

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

If 3 sin x+ 4 cos x =5 then 4 sin x -3 cos x is equal to

Prove that: (cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cot3x

Prove that: (cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cot3x

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x