Home
Class 12
MATHS
"sin" pi/n+ "sin" (3pi)/n+"sin" (5pi)/n+...

`"sin" pi/n+ "sin" (3pi)/n+"sin" (5pi)/n+….`upto n terms is equal to

A

1

B

2

C

3

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sin pi)/(n)+(sin(3 pi))/(n)+(sin(5 pi))/(n)+... to n terms is equal to

Assertion A: sin((pi)/(n))+(sin(3 pi))/(n)+(sin(5 pi))/(n)+.... to n terms +0 Reason (alpha+beta)+...... to n terms =sin alpha+sin(alpha+beta)+...... to terms=(sin(n(beta)/(2)))/(sin((beta)/(2)))*sin((2 alpha+(n-1)beta)/(2))

Evaluate sin((pi)/(n))+sin((3 pi)/(n))+sin((5 pi)/(n))+ to n terms.

Value of cos((pi)/(2n+1))+cos((3 pi)/(2n+1))+cos((5 pi)/(2n+1))+ upto n terms equals

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals:

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

If the sum of (n-1) terms of the series sin((pi)/(n))+sin((2 pi)/(n))+sin((3 pi)/(n))+.... is equal to 2+sqrt(3), then find the value of n.

Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|