Home
Class 12
MATHS
The value of cos(2cos^(-1)x+sin^(-1)x) a...

The value of `cos(2cos^(-1)x+sin^(-1)x)` at x=1/5, where `0 le cos^(-1)x lt pi` and `-pi/2 le sin^(-1)x le pi/2` is

A

`(2sqrt6)/5`

B

`1/6`

C

`-(2sqrt6)/5`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

If 0 le x le 2pi and |cos x | le sin x , the

If: sin(x+pi/6)=sqrt3/2 , where 0 le x le 2pi , then: x=

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)