Home
Class 12
MATHS
Find the solution of "tan"^(-1)(x+1)/(x...

Find the solution of
`"tan"^(-1)(x+1)/(x-1)+"cot"^(-1)x/(x-1)=tan^(-1)(-7)`

A

1

B

2

C

3

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

cot^(-1)x=tan^(-1)x then

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

Find the value of x if tan^(-1)(x^(-1))= cot^(-1)(4/x)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

Find the solution of the equation tan^(-1)x-cot^(-1)x=tan^(-1)((1)/(sqrt(3)))

the solution of tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x is

Find the value of x if tan^(-1)(x^(-1))=cot^(-1)((4)/(x))