Home
Class 12
MATHS
Given, 0 le x le 1/2, then the value of ...

Given, `0 le x le 1/2`, then the value of `tan[sin^(-1){x/sqrt2+(sqrt(1-x^2))/sqrt2}-sin^(-1)x]` is

A

1

B

`sqrt3`

C

`-1`

D

`1/sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Given , 0lexle(1)/(2) , then the value of tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

if x greater than equal to 0 and less than equal to 1/2 then find the value of tan[sin^(-1){(x)/(sqrt(2))+sqrt((1-x^(2))/(2))}-sin^(-1)x]

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

If -1le x le -(1)/(sqrt(2)) , then prove that sin^(-1)(2xsqrt(1-x^2))=-2pi+2cos^(-1)x .

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If sin^(-1)x_(i)in[0,1]AA i=1,2,3,....28 then find the maximum value of sqrt(sin^(-1)x_(1))sqrt(cos^(-1)x_(2))+sqrt(sin^(-1)x_(2))sqrt(sin^(-1)x_(3))+sqrt(sin^(-1)x_(3))sqrt(cos^(-1)x_(4))+...+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_(1))