Home
Class 12
MATHS
Number of solutions of the equation tan^...

Number of solutions of the equation `tan^(-1)(1/(2x+1))+tan^(-1)(1/(4x+1))=tan^(-1)(2/x^2)` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Arithmetic mean of the non-zero solutions of the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)((2)/(x^(2)))

Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1)) is :

If 1

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :